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ABSTRACT 
Rapid developments in the unmanned aerial systems (UAS) have made its usage in a variety of offensive as 
well as defensive applications especially in military, high priority and sensitive government sites. The ability 
to accurately classify over-the-air radio signals will provide insights into spectrum utilization, device 
fingerprinting and protocol identification. These insights can aid in estimating the UAS transmitters 
capabilities without their knowledge. In this paper, we present a Radio Frequency Signal Classification (RF-
Class) toolbox that can monitor, detect, and classify wireless signals emitted by UAS. The advantage of the 
RF-Class toolbox is extracting information about transmitters and providing receivers information about 
certain transmitted signals. The classification of RF signals will be done based on the modulation scheme 
recognition, exploitation of cyclostationary features and leveraging RF band allocation information. The 
modulation recognition capability can also be used for cyber offensive strategies. Once the modulation 
scheme is recognized, we can demodulate, decode and extract packets. Once the packets are extracted, we 
can accurately detect the protocol. The final step involves crafting a malicious packet and injecting the 
packet in the adversarial communication environment with intent to launch offensive operations. To 
demonstrate the feasibility and accuracy of our approach, we have evaluated the performance on a real 
environment with an UAS (Drone – DJI Phantom 4).  Our initial experimental result showed that we were 
able to detect presence of drone signal successfully in presence of varying SNR regimes. 

1.0 INTRODUCTION 

The influx of UAS devices has increased the threat surface in both commercial and military domains. 
Current security solutions are facing a huge challenge in detection of the rogue UAS devices. These 
solutions leverage fingerprints that are dependent on characteristics unique to specific UAS and cannot 
detect new UAS that are being introduced in the market on a regular basis. Attackers can easily substitute 
UAS devices and successfully launch attacks. In order for the current solutions to be effective, there is a need 
for a library of fingerprints of all new UAS devices, which is an expensive task and cannot be accomplished 
in a reasonable amount of time.  

There are several approaches to accurately fingerprint UAS devices and create a library of authorized and 
unauthorized devices. There are several approaches that leverage the physical properties of the devices to 
detect and geo-locate the presence of rogue UAS devices. The challenge with this approach is that they are 
prone to false positives due to potential errors in accurately collecting the physical characteristics. Instead, all 
UAS devices use standard communication protocols to transmit messages. However, the UAS devices 
modify the communication parameters to meet quality of service and security requirements. By 
fingerprinting UAS devices based on communication parameters, we can achieve higher degree of accuracy 
in detecting rogue devices and scale well as the approach is not dependent on any specific vendor or model. 
Additionally, as the appearance for many devices are able to be changed rather quickly, the communications 
protocols and standards are one of the more concrete aspects that allows for a high degree of accuracy in 
specific device classification. 
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In this paper, we present our ongoing work on development of a RF-Class Toolbox to aid in detecting and 
classifying UAS signals, which are captured in various SNR regimes to create a library of known UAS 
signals. For every detected signal, RF-Class toolbox will also identify the modulation parameters and the 
decoded packet structure. This information can be used to craft a waveform and launch a protocol attack on 
the adversarial UAS signal. The RF-Class toolbox’s ability to detect signal energy, automatic modulation 
recognition and classification will be useful for counter UAS efforts. 

The RF-Class toolbox depends on automatic radio frequency (RF) modulation classification which is an 
intermediate step between spectrum (i.e., signal) detection and demodulation. Implementation of advanced 
information services and systems such as signal detection and classification are challenging tasks, especially 
in a non-cooperative crowded environment where various factors like interference, low SNR, fading, phase 
and frequency offsets cause distortion to the received signal. Signal detection and classification are 
predominated processes in several civilian and military applications such as dynamic spectrum access 
(DSA), authentication, threat detection, etc. In a hostile non-cooperative environment, it is important to 
detect a primary user signal and demodulate it securely, while simultaneously detecting, jamming and/or 
modify the intruder signal.  

Software Defined Radios (SDRs) are widely used to develop various civilian and military applications. The 
SDRs are open source and this makes them ideal for implementing a Radio Frequency Signal Classification 
(RF-Class) toolbox. SDRs usually works with variety of communication systems and often reconfigured 
through transmitted supplementary information. Modern signal transmission systems are intelligent, yielding 
an increase in the transmission efficiency by reducing the overhead. Such applications have emerged the 
need for flexible intelligent receiver, where the automatic recognition of the modulation of a detected signal 
is a major challenging task. Automatic modulation classification (AMC) is an important element that helps to 
detect and classify the known and/or unknown signal. Due to the non-cooperative nature and real-world 
scenarios, AMC faces various challenges due to unknown carrier frequency, phase offsets, time offsets, 
signal power, multipath fading, frequency selective fading, etc.  

Numerous AMC techniques have been studied for more than a decade that concludes AMC design involves 
two phases: Signal Detection and Classification. The signal detection phase performs estimation of signal-to-
noise ratio (SNR), signal power, etc. Whereas classification categorizes signals based on their modulation 
types and finds sub-modulation types.  Due to the usage of various types of digital modulation techniques, it 
is difficult to select a particular signal detection method and classification technique that is applicable in all 
scenarios. So, it is needed to design and implement a flexible intelligent Radio Frequency Signal 
Classification (RF-Class) toolbox.  

The classification techniques available in RF toolbox are categorized into two different categories of 
classifiers such as feature-based (FB) and likelihood-based (LB) classifiers. The latter is based on the 
likelihood function of the received signal and the decision is made comparing the likelihood ratio against a 
threshold. A solution offered by the LB algorithms is optimal in the Bayesian sense, i.e., it minimizes the 
probability of false classification. The optimal solution suffers from computational complexity, which in 
many cases of interest naturally gives rise to suboptimal classifiers. In the FB approach, on the other hand, 
several features are usually employed, and a decision is made based on their observed values. These features 
are normally chosen in an ad-hoc way. Although a FB-based method may not be optimal, it is usually simple 
to implement, with near-optimal performance, when designed properly. 

In recent years, new technologies for wireless communications have emerged. The wireless industry has 
shown great interest in orthogonal frequency division multiplexing (OFDM) systems, due to the efficiency of 
OFDM schemes to transmit information in frequency selective fading channels, without complex equalizers. 
Multiple-input multiple-output (MIMO) systems have also received considerable attention, due to the 
significant capacity increase they offer. Such emerging technologies in wireless communications have raised 
new challenges for the designers of signal intelligence and SDR systems, such as, discriminating between 
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OFDM and single carrier modulations, identification of signals transmitted from multiple antenna systems, 
and so on. 

2.0 APPROACH 

We have designed and implemented a RF-Class toolbox on an SDR to classify presence of a UAS device 
within a specific frequency band. In the paper, we plan to propose the detailed design of the RF-Class 
toolbox, the implementation of the toolbox in an SDR and our results conducted on detecting DJI family of 
drones. Below is a brief description of the key elements of the RF-Class toolbox: 

• RF Signal Detection – RF-Class’s signal detection block will automatically extract signals by 
analysing broadband spectrums. We will employ Energy Detection (ED), Feature Detection (FD) 
and automatic Environment Thresholding (ET) to ensure detection and robustness to noise and 
fading effects.  In some scenarios, we might also need to split the spectrum into sub channels and 
conduct energy detection within the sub channels. 

• Cyclostationary Features Extraction – Modulated signals are typically cyclostationary processes. 
Cyclostationary processes have periodic autocorrelation functions and these functions can be 
extracted using Fourier analysis. This analysis can also give indication of modulation type. We will 
use cyclostationary-based signal processing algorithm such as spectral correlation function (SCF) 
and spectral coherence function (SOF) to fully observe the cyclic frequency features. 

• Automatic Modulation Recognition – RF-Class’s modulation recognition block will classify based 
on extracted cyclostationary features. We will have the ability implement recognition of PSK, FSK, 
QAM, OFDM schemes.  

• Machine Learning Models – RF Class’s extracted data is used to train machine learning models that 
are able to predict various classes of detected signals. This data is used as part of the feature-based 
(FB) classifiers and allows complex environment situations to be computed from mathematical 
models. 

• Visualization – RF-Class’s Visualization block will provide user friendly interfaces for users to 
analyse receiving signals. The block will visualize the receiving wideband spectrum, detected signal, 
modulation scheme and signal classification. 

2.1 RF Signal Detection 
RF Class’s signal detection focuses on physical layer signal characteristics. Due to the nature of adversarial 
UAS configurations, this approach allows for raw signals to be extracted and classified. This technique 
extracts signals from wideband spectrums, allowing for entire bands to be monitored in real-time. The ED 
technique computes a signals power over a given period of time. This calculation converts a signal from the 
time to frequency domain and squares the magnitude of the signal, effectively computing the average power 
of the received signal. This technique aims at providing the system with a capability to filter out signals that 
don’t meet specifications of UAS.  

Of equal important to the signal detection approach is the ability to threshold the system in decreased SNR 
environments or in situations where signal levels fluctuate frequently. The ET technique uses baseline 
measurements to update environment thresholds that are used to compute various machine learning models. 
This technique identifies the lowest power calculation of the signal by searching and comparing the bins of 
the conversion to the frequency domain. In allowing the various environment baselines to be added to the 
models, models can be used across different environments, given the parameters of the UAS are 
homogenous in both situations.  

SDRs have been proven one of the best pieces of hardware to run the RF Class system. Due to the nature of 
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SDRs that provide wide continuous RF coverage and operations of wide real-time bandwidths, the ability to 
split RF bands into multiple sub channels allows for entire bands to be monitored in real-time. This split 
requires multiple devices capable of operating at their respective device limits, allowing a network of devices 
to integrate workflows together into a unified system. This technique can be reconfigured to share resources 
across the network, allowing processing chunks to run instances of the RF class. These instances are then 
responsible for computing both ED and ET techniques for the channels being monitored. 

2.2 Cyclostationary Feature Extraction 
Cyclostationary feature extraction is a technique used to extract useful signal characteristics using FB 
classifiers. The signal is passed from the energy detection block in the flowgraph to a block used to detect 
unique parameters of the modulated signal. These features are extracted by using various spectral correlation 
functions and blind measurement functions based on predetermined and/or precomputed data inputs. This 
feature extraction focuses on parameters unique to Orthogonal Frequency Division Multiplexing (OFDM) 
modulated signals. This extraction is based on the predetermination of the UAS using a OFDM modulated 
signal. The four parameters from this modulated signal RF-Class was created to extract are shown in Table 
1. 

Table 1. Extracted Cyclostationary Features 

Parameter Variable Units 

Cyclic Prefix Length CP  

Subcarriers N none 

Subcarrier Spacing   

Symbol Time   

 

The process of the cyclostationary feature extraction involves four steps including correlation functions and 
estimation of features based on assumptions that are then refined based on real data. The first step in 
extracting features starts with the discrete signal y[n]. In this case, the signal is a vector of ADC 
measurements performed by the software defined radio. Using this signal, we calculate the autocorrection 
that is used to estimate the FFT length or subcarriers. This technique is evaluating a blind approach to 
determining the first OFDM signal parameters, under assumptions of a random signal lag l. Equation 1 
below shows the discrete autocorrelation function used to determine the number of subcarriers of the OFDM 
signal. 

    (1) 

The number of subcarriers is then found by calculating the length of R. This calculation is the first step in 
determining the presence of a UAS signal, usually resulting from a higher number of subcarriers due to the 
large amount of information being transmitted.  

The next step involves calculating the Cyclic Prefix length (CP) from the total length of subcarriers. 
However, this calculation involves a Cyclic Autocorrelation Function (CAF), a time-varying autocorrelation 
of a complex-valued cyclostationary signal x(t). For cyclostationary signals, the autocorrelation depends on a 
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central time t.  This time t is centered between time instants and . Equations 2 and 3 show how times 
and  are calculated to be used as limits in the autocorrelation, Equation 4. In this autocorrelation, the 

result is a periodic function, which can be represented as a Fourier series, with , the coefficient which 
is the CAF of the signal. This calculation takes a complex signal and allows for a fast Fourier transform to be 
implemented.  Equation 5 represents the mentioned Fourier series expansion of Equation 4.  

       (2) 

       (3) 

]    (4) 

     (5) 

However, the start of the CP is calculated by evaluating the peak value of the FFT of Equation 5, adjusted for 
the shift in frequency offset using only positive frequencies. This peak value represents the start of the CP 
length symbol of the total subcarriers. The CP is then found by subtracting the calculated peak value from 
the total length of subcarriers found in Equation 1.  

The last two values of the cyclostationary features, subcarrier spacing and symbol time are found by using 
the first two parameters, as well as the sampling rate. First, the subcarrier spacing, the frequency of 
subcarrier spacing in the total OFDM signal, is found by dividing the sample rate by the total length of 
subcarriers, N, found in Equation 1. Symbol time is then calculated as the inverse of the subcarrier spacing. 
These four parameters become inputs to the AMC, using machine learning to recognize and determine if the 
calculated values match that of predefined UAS signals.  

2.3 Automatic Modulation Recognition 
Automatic Modulation Recognition (AMC), is a process that used machine learning classifiers to determine 
a modulation type of a signal. These classifiers are not defined to a certain machine learning approach and 
the RF-Class toolbox includes support for various approaches to be implemented. Due to the assumptions of 
the OFDM modulation scheme of the UAS signal from Section 2.2, AMC is then used to determine if those 
assumptions were correct. This technique is evaluating on a set of extracted features, which is why the 
machine learning algorithm, k-nearest neighbours (KNN) is used. The k-nearest neighbours’ algorithm (k-
NN) is a non-parametric method used for classification and regression [1]. This algorithm is evaluated in 
feature space, a transformed space evaluating distance metrics of closest data points of each feature in a 
predefined cluster size, k.  

k-NN is a type of instance-based learning, or lazy learning, where the function is only approximated locally 
and all computation is deferred until function evaluation [1]. This offset of computation pairs perfectly with 
the SDR, allowing for a precomputed model to be loaded and then used to classify class membership of a set 
of features. This algorithm requires pre-recorded data sets from various UAS, compiled together to create a 
total training dataset. Currently, all data processing is done offline to dimension the dataset to be used 
effectively in the training phase. This process involves the clustering of data points and the computed nearest 
neighbour boundary plots, which are then used to create a model. This model is then a lookup for new 
instances of feature sets, that can be deployed in real-time to determine if an observed signal is that of a UAS 
in the library of signals.  

2.4 Machine Learning Models 
Using the AMC approach, models are created from captured signal data, compiled together to create a 
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training data set. Since the model is evaluated in feature space, the accuracy of the model is directly 
proportional to the accuracy of the data set to real UAS signals. The algorithm has the ability to predict on 
cases in which the observed signal doesn’t precisely match any point in the training set, but requires the set 
to be broad enough. This broadness is defined to the environment the system is to be deployed in, but is able 
to vary environment to environment if they reflect similar captured scenarios.  

Since, captured data in the training phase of the model is the most important metric, the RF-Class system 
focuses on data capturing optimization that allows a user to operate the system to create the data sets needed 
to train a model that can be used to classify the class membership of real-time feature capture. This process 
involves capturing data of various UAS scenarios, attempting to create a broad enough set that can 
accurately predict a rouge UAS signal in an environment.  

The scenarios captured in this paper reflect: clear line of sight, shadowing, fading, unknown location, and 
pathloss due to environmental obstructions. These cases capture UAS under load and non-load conditions 
creating a dataset of a wide variety of conditions. Models loaded into the system for real-time calculations 
evaluate two or more classifications, with the class membership of “no signal present” as a case in every 
model. Since the evaluation time of a “model” or given dataset can be computed in seconds, the cycle of 
model creation from data capture can be repeated until a target level of accuracy is achieved.  

2.5 Visualization  
RF-Class’s visualization block was created to have user friendly interfaces showing various received signals, 
wideband spectrums, verified modulation schemes, and class memberships of various UAS signals in the 
known library. These various plugins are integrated together to allow a user to choose what they want to see. 
In the flowgraph of the GNU Radio program, a user also has the ability to update parameters, change 
variables, and input computed models. This visualization is integrated in the GNU Radio framework and 
some of the interfaces are shown in figures 1 and 2. Figure 1 shows the user’s ability to modify variables of 
one of the blocks, in this case, the cyclostationary feature extraction block. Conversely, figure 2 shows a 
frequency plot of captured wideband UAS signal time slice. This frequency plot shows the FFT of the 
discretized signal captured through the SDR. 

 

Figure 1. Cyclostationary Feature Extraction Block Parameters 

The internal variables of this block set the variable initializations of the code performing the various data 
processing techniques. In this case, the variables above pertain directly to the parameter extraction 
techniques explained in section 2. The variable minimum input items allow the process of parameter 
extraction to be based on, in this case, 7000 or more measurements from the SDR, ensuring a valid output. In 
cases where less than this number of measurements are taken, the system continues to run until this number 
is reached. The FFT lengths variable sets a list of possible number of FFT sample size of subcarriers the 
system is able to choose. Since OFDM modulated signals multiplex a wideband signal into total carriers of 
2n, seven possible values are listed in the set. Finally, the CP lengths list verifies calculations made are of 
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those listed in the set. This account for slight inaccuracies in the calculation and make sure the calculated 
number is also a base 2 number. 

 

Figure 2. Frequency Plot of Captured UAS Signal 

Lastly, an interface displaying the IQ data of the signal is shown below in figure 3. This plot shows 
measurements of a captured UAS signal before any signal analysis. This interface shows a scenario in which 
the UAS was operating under a load condition at a short distance range from the system. 

 

Figure 3. IQ Data Plot of Captured UAS Signal 

3.0 APPROACH 

3.1 Visualization 

Testing and validation processes were completed for various UAS classes, environment conditions, and load 
conditions. In each case, the accuracy of the system was updated from a performance metric used in the 
training phase during the machine learning model creation phase. This performance metric used is called a 
confusion matrix. This matrix is responsible for evaluating true and false positives for predicted conditions 
versus the true condition. For this, Table 2 shows a basic confusion matrix showing four possible scenarios 
that can occur from a data points predicted class membership versus the true class membership of the point.  
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Table 2. Basic Confusion Matrix Validation Metric 
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Table 3. RF-Class 2-Class Confusion Matrix 
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A more useable performance metric specifically for the RF-Class system is shown in Table 3. Instead of a 
positive or negative validation, this case looks to classify between two different class memberships. The 
distribution of the results becomes a calculation of the instances of the four possible outputs of the 
classification. Starting in the top left of the bolded box, the true positive (TP) condition occurs when the 
system labels a data point as class 1 and it it’s actual label, chosen during data collection, was also class 1. 
Conversely, the true negative (TN) case is the same as TP, but with class 2 instead. The two important 
outputs of this metric are when the outputs are false. These two outputs are what is used to tell which way 
the prediction system is leaning in incorrect classifying. The top right output, false positive, occurs when the 
system falsely predicts a class 2 point as class 1. The lower left is the opposite of this, incorrectly classifying 
a class 1 point as class 2. These validation parameters provide the user with useful data metrics showing if 
the system is leaning toward incorrectly classifying a certain class membership. As the basis of accuracy of 
the system, this is calculated by Equation 6 and a basic example using 10k total number of data points, 
correctly predicted 9,890 of those shown in Equation 7.  

    (6) 

   (7) 

3.2 RF-Class Experimental Test Setup 

Using this performance metric, the system was then able to evaluate model performance after different 
datasets and conditions were loaded. The experimental test setup for lab testing is shown in Table 4. This 
experimental setup remained uniform across environments, with every metric explained in this paper 
following this experimental setup.  
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Table 4. Experimental Test Setup Components 

Hardware 

Type Description 

Computer Dell Laptop (i5, 2.3GHz, 16 Gb RAM) 

SDR 
Ettus Research B210 USRP 

Ettus Research B205 mini-i USRP 

Antennas 

2.4/5.8 GHz, 9 dBi, Directional Antenna 

2.4 GHz, 12 dBi, Omni-Directional Antenna 

5.8 GHz, 16 dBi, Directional Antenna 

2.4 GHz, 17 dBi, Directional Antenna 

UAS 

DJI Mavic 2 

DJI Phantom 4 V2 

DJI Mavic Air 

Software 

GNU Radio Companion (GRC) 

 

This table outlines all of the possible components used for testing the RF-Class system. For the different 
types of hardware listed: both SDRs used in testing, all four of the possible antennas, and all three DJI 
Drones. Additionally, the software was GNU Radio Companion, a GUI version of the GNU Radio toolbox 
with custom RF-Class coded blocks performing various data processing. As mentioned before, GNU Radio 
is a signal processing framework creating a flowgraph of connected blocks to connect data to each other. 
Figure 4 shows the custom GNU Radio flowgraph of the RF-Class system, with all of the blocks used in 
compilation shown.  

This flowgraph, when ran, outputs a GUI that allows a user to interact with various interfaces and visualize 
the real-time data from section 2.5. This flowgraph is unique to the RF-Class system and any block 
containing RFCL is a custom block. As mentioned in section 2.5, each unique interface of the system has the 
ability to be turned on/off to allow the user to display only useful information when performing various 
testing scenarios.  
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Figure 4. RF-Class GNU Radio Custom Flowgraph 

The test setups include three basic scenario categories: clear line of sight, shadowing/fading, and no line of 
sight. Various test cases were merged into these three categories to simplify data verification and model 
accuracy. Starting with the first category, clear line of sight implies that the distances in the results are the 
drone-to-receiver distances and the user was able clearly see the UAS with minimal environmental 
obstructions. The second category, shadowing/fading, introduces various environmental obstructions with 
some line-of-sight knowledge. This category would imply the user is able to see the UAS, but there would be 
multiple obstructions in the path. The last category tests the system’s ability to perform under a substantial 
signal loss, due to large obstructions. This category of tests generally involved positioning the UAS in front 
of the building and running the system from the back (~50m building) and determining if the UAS was 
detected.  

3.3 Experimental Results 

The RF-Class system was successfully able to detect the presence of UAS signals in various environments. 
These scenarios were captured with as many constants between tests as possible. For each of the testing sites, 
this paper focuses on the DJI Mavic 2 UAS, showing the system performance of the same setup across the 
three environments, with each providing new findings. For each of these environments, the same testing 
protocols and amount of data collected remained the same. This setup included the B210 USRP, 2.4/5.8 
GHz, 9 dBi, Directional Antenna and the DJI Mavic 2 UAS. Additionally, a new model was created for each 
environment based on newly captured data.  

The results of the system performance in detecting the presence of the DJI Mavic 2 drone outdoors at Test 
Site #1 for the three categories are Tables 5, 6, and 7 respectively. With the ability to test the RF-Class 
system in a smaller environment, the system was updated until the precision of the different tests produced 
the same intended results. This system reliability in the slightly rural environment of Test Site #1, proved not 
only functionality for the system but the baseline achievable performance. 
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Table 5. Clear Line of Sight (Test Site #1) 

Number of Samples = 5000 (Random 20% of 25k) 

Distance (m) Accuracy (%) TP FP TN FN 

5 99.98 2519 0 2480 1 

25 99.84 2514 5 2478 3 

50 99.34 2501 18 2466 15 

100 99.46 2502 17 2471 20 

125 98.82 2483 36 2458 23 

150 95.34 2311 124 2456 109 

 

Table 6. Shadowing/Fading (Test Site #1) 

Number of Samples = 5000 (Random 20% of 25k) 

Distance (m) Accuracy (%) TP FP TN FN 

Shadowing/Fading 88.57 2134 243 2294 329 

 

Table 7. Clear Line of Sight (Test Site #1) 

Number of Samples = 5000 (Random 20% of 25k) 

Distance (m) Accuracy (%) TP FP TN FN 

Unknown Location 81.22 1987 563 2074 376 

 

After the extensive testing at Test Site #1, we wanted to prove the performance in a new testing environment, 
but keeping the same testing protocols. In a more rural environment, Test Site #2, we were able to test the 
system functionality on a larger dataset and extending the line-of-sight distance to as far as the environment 
would allow. The results of this test for the three categories are shown in Tables 8, 9, 10, respectively.  
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Table 8. Clear Line of Sight (Test Site #2) 

Number of Samples = 20000 (Random 20% of 100k) 

Distance (m) Accuracy (%) TP FP TN FN 

5 99.98 10040 0 9956 4 

100 99.34 10156 43 9712 89 

200 98.78 10012 112 9744 132 

300 96.49 9842 435 9456 267 

400 94.23 8967 641 9879 513 

 

Table 9. Shadowing/Fading (Test Site #2) 

Number of Samples = 20000 (Random 20% of 100k) 

Distance (m) Accuracy (%) TP FP TN FN 

Shadowing/Fading 89.22 8156 1149 9688 1007 

 

Table 10. Clear Line of Sight (Test Site #2) 

Number of Samples = 20000 (Random 20% of 100k) 

Distance (m) Accuracy (%) TP FP TN FN 

Unknown Location 87.22 8912 1513 8532 1042 

 

The last testing scenario again occurred in a new testing environment, Test Site 3. This site was the most 
rural of the three and allowed for us to test the maximum limits of the system, pertaining to line of sight, 
even when we were able to see the UAS. This test was based on the testing protocols of Test Site #2, 
including the increased amount of collected data, thus proving a broad range of possibilities of the system. 
This test didn’t allow for the no light of site category to be tested, due to environment conditions. The results 
of this test for the first two categories are shown in Tables 11 and 12 respectively.  
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Table 11. Clear Line of Sight (Test Site #3) 

Number of Samples = 20000 (Random 20% of 100k) 

Distance (m) Accuracy (%) TP FP TN FN 

100 99.98 10040 0 9956 4 

200 99.34 10156 43 9712 89 

500 98.77 10012 111 9745 132 

600 93.14 9842 435 9456 267 

700 91.88 8859 740 9767 632 

800 87.20 9069 1254 8371 1306 

900 81.09 8271 1967 7947 1815 

1000 74.67 7915 2685 7019 2381 

 

Table 12. Shadowing/Fading (Test Site #3) 

Number of Samples = 20000 (Random 20% of 100k) 

Distance (m) Accuracy (%) TP FP TN FN 

Shadowing/Fading 64.58 6845 3755 6071 3329 

 

3.4 Discussion 
The above section of results outlines the various conditions in which the RF-Class system was put through in 
order to reliably and accurately detect the presence of a UAS signal in an environment. These extensive 
testing setups allowed critical refinements to the machine learning algorithm and models, resulting in a large 
dataset pertaining to each Test Site. Additionally, we were able to test one model in a different environment 
after some basic environment thresholding was completed, proving the success of a pretrained model to 
seamlessly flow between environments. The results concluded with a rough UAS detection radius of 1 Km 
and allowed a combined model across two environments to increase the model accuracy by ~3.7%, bringing 
the average detection accuracy of the model in every case to above 90%.  

4.0 FUTURE WORK 

This research focused mostly on the completed and verified work of UAS detection between that of a non-
UAS signal. In doing this, we were introduced to the various machine learning algorithms and approaches to 
solve AMC and drone classification. However, as the current approach and conclusions were formulated, we 
started to notice the inaccuracies of the system’s ability classify multiple UAS signals in the same 
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environment simultaneously. This observation arose from the outputs of each UAS signals that did not 
change from class to class. Since all of the three drones were from the same manufacturer, the chances of the 
same signal modulation type and parameters was high, with a defining characteristic not yet found. 

Moving forward, our focus will remain on multi-UAS classification in the same environment. We see this 
problem accomplished with the following four sequential flow of milestones and predicted scenarios: 

• Multi-UAS devices across classes present in the same band at the same time. This would imply that 
the UAS devices are not interfering with each other and operating on different channels within that 
band. 

• Multi-UAS duplicate devices of the same class present in the same band at the same time. Again, 
this would imply that the UAS devices are not interfering with each other and operating on different 
channels within that band. 

• Multi-UAS devices across classes operating on the same frequency channel within a specified band, 
leading to some signal overlap and/or interference 

• Multi-UAS duplicate devices of the same class operating on the same frequency channel within a 
specified band, leading to some signal overlap and/or interference 

 
This approach involves additional features that are used in the AMC and machine learning algorithms. We 
see this parameter still being part of the physical signal and are identifying feature candidates that would 
achieve the same level of accuracy as the system moves from single UAS detection to multiple. We are 
currently working on these approaches and don’t reflect any updates to the processes outlined in this paper.  

Moving into a multi-UAS classification, the addition of a feature is hypothesized to solve the classification 
problem. We plan to do this with the following three initial feature candidates or signal processing functions: 

• Radio Frequency Band Allocation – this would provide the system with a windowing capability that 
would be able to simultaneously monitor an entire frequency without having to sweep the band. This 
monitoring would require at least two devices, each responsible for a section of channels in the 
frequency band. This initially would allow for multiple UAS to be detected if multiple devices are 
monitoring separate channels. Figure 5 below shows an initial graphic showing two roughly 
separated set of channels for each of the USRP devices, effectively covering the entire band 
simultaneously. The blue boxes show the captured channels in which each USRP would monitor. 

 

Figure 5. Proposed Band Allocation Approach 

• IQ Data Processing – The approach would investigate both amplitude and phase of various UAS 
signals, adding these features to the AMC machine learning model. This approach involves data 
processing using spectral correlation functions providing values of cyclo-stationary nature of signal, 
which is a useful function explaining specific UAS devices spectral correlation as observed by the 
system. Lastly, this would analyse time slices of a specific drone under load and non-load 
conditions. 

• Machine Learning Data Optimization – This last approach provides the system with the ability to 
use optimized data sets and well as a more functional UI in order for data collection to be easier, 
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providing more automation to the system. This would add the addition of environmental 
thresholding max value to capture full signal amplitude of drone, input of amplitude and phase from 
signal data stream, and include spectral correlation function output into model’s feature inputs. 
Lastly, this would provide a user the ability to perform data collection for multiple UAS devices, 
perform machine learning training, and finish and load machine learning models. 

5.0 CONCLUSION 

The RF based UAS detection scheme provides an agnostic approach to detecting and identifying presence of 
UAS in several SNR regimes. In addition, this capability will also aid operators in eliminating non-UAS 
signals in physical space and focus their detection in physical spaces where UAS signals have been detected. 
This capability will improve the efficiency of detection as prior knowledge of RF fingerprints will aid in 
ensuring every detection will only focus on unknown RF signal detection. This would eventually help 
operators to speed up the detection and identification of UAS devices. 
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